

Designing Regenerative Grazing

That works in practice

Graeme Hand

graemehand9@gmail.com 0418532130

1

Agenda

- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

2

Our Story

- · 1990 implemented HM and Holistic Planned grazing
- 1996 trained as an educator with Allan Savory (USA)
- · Accredited with Savory Institute & HMI
- A focus on increasing farmer success led to a search for what do successful farmers do differently:
 - Stipa position allowed me to move across trainers and tribes
 - Barriers to adoption (Doug –McKenzie Mohr)
 - Complexity (Dave Snowden)

3

3

Agenda

- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

4

Handbrake turn?

5

Level of Change

- 1. Efficiency
- 2. Substitution
- 3. Redesign

Source: Professor Stuart Hill

- . Underestimating Risk
- •"......farm viability depends more on minimising losses than maximising production, and it is these accumulated losses which threaten farm business survival and growth".

Dr Tim Hutchings & family

7

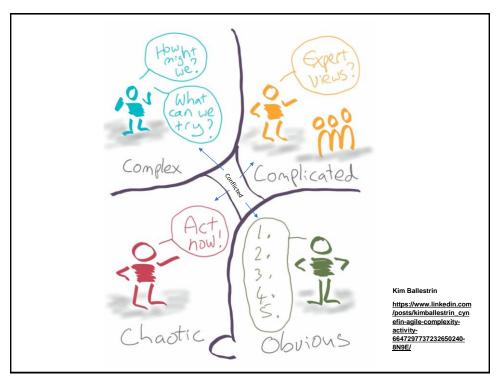
Risks in Agriculture

- 1. Debt
- 2. Seasonal
- 3. Market Price

Agenda

- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

9


9

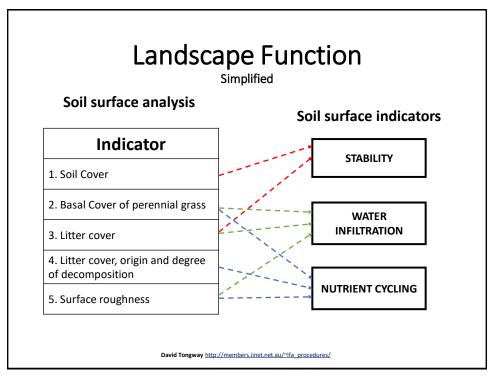
Complexity

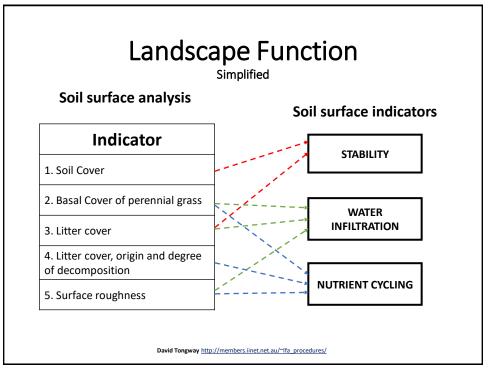
Source: http://cognitive-edge.com

10

Agenda

- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A


13


13

What is landscape function?

- Landscape function analysis (LFA) is a monitoring procedure that uses rapidly acquired field-assessed indicators to assess the biogeochemical functioning of landscapes.....
- LFA Manual © CSIRO Australia 2004

Same soil type – different management

Higher organic matter – more stable, increased infiltration and nutrient cycling

Stability = 69.1 Infiltration = 39.8 Nutrient cycling = 31.7

Low organic matter – poor stability, low water infiltration and nutrient cycling

Stability = 43.3 Infiltration = 24.0 Nutrient cycling = 11.5

17

Agenda

- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

Grazing Management Extremes

Low Impact High Frequency High

High Impact Low Frequency

- Recovery Time Mix it up
- Perennial grass recovery +

· Eat a third

- Eat as deep as possible
- Stock Density Mix it up
- · Maintain high stock density

19

J. Range Manage. 46:118-121, March 1993

Effects of short duration and high-intensity, low-frequency grazing systems on forage production and composition

C.A. TAYLOR JR., T.D. BROOKS, AND N.E. GARZA

Authors are experiment station superintendent, Texas Agricultural Experiment Station, P.O. Box 918, Sonora, Tex. 76549; research associate, Texas Agricultural Experiment Station; research associate, Texas Agricultural

Abstract

Research was conducted at the Sonora Research Station during a 4-year period (1984 to 1988) to measure differences in herbaceous vegetation response between two 7-pasture 1-herd grazing systems. Grazing tactics were short duration (SDG-7 days graze, 42 days rest) and high intensity, low frequency (HILF-14days graze, 84 days rest). Stocking rate for the 2 treatments was 10.4 ha/auy. Total aboveground net primary production (ANPP) varied significantly among years but not between grazing treatments. Significant, divergent shifts in composition did occur over the 4 years as a function of grazing treatment. Shortgrass production in the SDG pastures increased from 45% of the total ANPP for year 1 to 74% for year 4. Shortgrass ANPP in the HILF pastures comprised 44% of the total herbaceous production for year 1 and 51% for year 4. Midgrass ANPP in SDG pastures comprised 3.8% of the herbaceous production for year 1 and 13.6% for year 4. Midgrass production in the HILF pastures represented 4.7% for year 1 and 33.9% for year 4. Our data indicate the SDG system did not promote secondary succession from shortgrasses to midgrasses as effectively as did the HILF system.

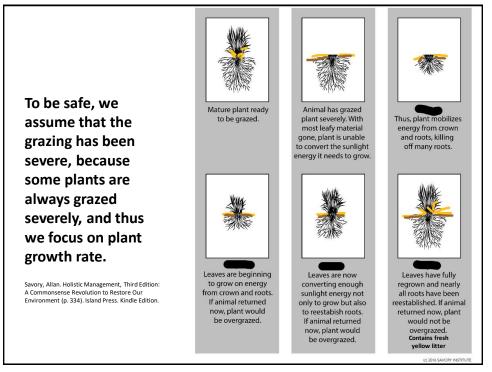
Agenda

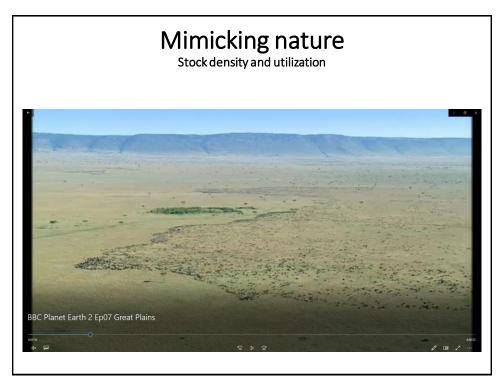
- 1. Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

21

21

Leaf emergence Leaf of Leaf 2 Leaf 1 Leaf 1 Leaf 2 Leaf 3 Leaf 3


Definition of perennial grass recovery


- When it looks like an ungrazed plant & contains fresh yellow litter
- Depends on temperature and soil moisture & previous management which means we need to monitor

24

Mimicking nature

28

Mimicking nature

Role of predators

30

Time

High utilization ensures better grasses are not disadvantaged

One of a few severely grazed perennial grass plants among millions of plants after one horse had grazed for one hour in a paddock.

Savory, Allan. Holistic Management, Third Edition: A Commonsense Revolution to Restore Our Environment . Island Press. Kindle Edition.

31

Grass Productivity Andre Voisin

"To what height should grass be grazed?" Page 56

......The logical idea is therefore not to graze the sward too closely so that the plant will be left with sufficient green surface, the chlorophyll of which will be able, right from the start, to carry out its work of synthesis and immediately aid regrowth. In this way the duration of the initial period of slow regrowth is reduced. From the plant physiology point of view one might say that the low level part of the S curve is reduced.

32

Grass Productivity Andre Voisin

"To what height should grass be grazed?" Page 56

Unfortunately we see here again perfectly sound, theoretical and scientific considerations running foul of practical obstacles which could not be foreseen a priori.

Cows (or animals in general) have the habit of first grazing down the parts they prefer before going on to the herbage they like less "

Man, Cattle and Veld Johann Ziestman

 Such information is as useless as....... the recommendation that grass should not be defoliated close to the ground as such grass takes longer to recover. The latter information may be of value one day when cattle have been taught to graze at an even height (Page 34).

34

"Non selective or severe grazing has so many advantages over grazing selectively which demands coming back faster. On the left grazed selectively 2-3 times per year for over 12 years. On the right, after only one severe grazing followed by a full growing season rest. Same paddock, change of grazing type which leads to a much better succession and desirable plants recruitment. This type of grazing sequesters MUCH MORE carbon and benefits the WHOLE". Source: Jaime Elizondo https://www.facebook.com/search/top/?q=jaime%20elizondo%20braun

Safe to fail practice areas

- Small
- Grazed for a couple of hours
- Locked up for range of recoveries
- At least one at 6 months and one at 12 months

36

36

Safe to fail practice areas

- Animals monitored closely
- Soil surface left covered
- Couple of practice areas with a range of recoveries
- Take photos and monitor

37

	٧	/hat	the de	art hit (tick		urface around art (fick	С	han		Nearest perennial			Age	st		Basc	ıl ared	a	Observations
Throw number	Bare Soil	Litter No Decomp	Litter Slight Decomp	Litter Fungal Decomp	Perennial Grass Base	Capped soil surface	Covered	Annuals present	Soil Movement	Evidence of other animals, estimated insects etc	Name of nearest perennial grass	Distance to nearest perennial grass (cm)	Seedling	Monoy		Distance to nearest perennial grass (>4 cm²)	Width nearest perennial grass	Breadth nearest perennial grass (>4 cm²)	Basal area nearest perennial grass (>4 cm²)	Species observed, oxidising litter in perennial grass, woody increasing, annuals/ forbs increasing etc. Photos of litter in perennial bases, Estimated overall litter class
1																				Class
2	H	Н				\vdash						⊢	⊢	H	Н	┢		┢	⊢	
4																				
5		Ц											L		L			<u> </u>	_	
7	H	\dashv										-	⊢	H	┢			-		
8	Н	\forall							\vdash			t	H	\vdash	\vdash			\vdash	Н	
9																				
10	Ļ				_	_	_	Ļ	Ļ	Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	_	-	⊢	
tals	0	0	0	0	0	0	0	0	0	0	Average (cm)	0	0	0	0	0				

Decomposing vs Raw Litter

Decomposing litter on the left

Land Monitoring and Corrective Action Form Date _____

Site	Variation to Landscape Goal	Possible Cause of Variation	Possible Corrective Action	Who/When
	Bare ground between grass plants – no raw litter present	Litter not produced as perennial grass not fully recovered (look like an ungrazed plant and contains fresh litter) before grazing i.e. recoveries too short for growth rate.	Check increasing recovery between grazing's in a practice area. Usual cause is overstocked for seasonal growth. Determine where planning/ enterprise design has failed. Adjust stocking rate	
		Animals picking up litter as not being moved on gut fill.	Watch animals grazing to confirm. Usual cause is overstocked for seasonal growth. Determine where planning/ enterprise design has failed. Adjust stocking rate	
	Raw litter present but not composting/ decomposing	Litter not in contact with soil surface and not available to soil life.	Check increasing animal impact – confirm in trail area. Usual cause is low stock density or moving animals on too fast. Check animals are moved on gut fill.	
	Perennial grass spacing increasing. Annual forbs and grasses increasing	Perennial grass dying from recovery too short	Check increasing recovery – confirm in practice area. Usual cause is overstocked for seasonal growth. Determine where planning/ enterprise design has failed. Adjust stocking rate	

© Graeme Hand May not be copied or distributed without prior permission E: graemehand9@gmail.com

40

hand#land

Land Monitoring and Corrective Action Form (cont.) Date _____

Site	Variation to Landscape Goal	Possible Cause of Variation	Possible Corrective Action	Who/When
	Seedlings not present	 Lack of animal impact/ disturbance to initiate germination of better perennial grasses. 	Check increasing animal impact in a smaller paddock or changing animal behaviour.	
		Lack of perennial grass recovery	Check if seedlings present before grazing. If present and not establishing increase recovery. Usual cause is overstocked for seasonal growth. Determine where planning/ enterprise design has failed. Adjust stocking rate	
	Decline in better perennial grasses	Low utilisation and/ or lack of animal impact/ disturbance to initiate germination of better perennial grasses.	Check increasing utilisation in a smaller paddock Usual cause is low stock density or moving animals on too fast (light graze). Check animals are moved on qut fill.	
	Grey oxidising grass noted as increasing	Perennial grass litter not cycling Paddock too large to allow even grazing	Check increasing animal impact through a smaller paddock or changing animal behaviour Check if smaller paddocks have grey oxidising grass – confirm in a practice area. Plan required for profitable development of smaller paddocks	
	Woody plants noted as increasing	Perennial grass dying from not having growth points cleared.	Check increasing animal impact through a smaller paddock or changing animal behaviour	
		Paddock too large to allow even grazing	Check if smaller paddocks stops woody seedlings germinating— confirm in a practice area	

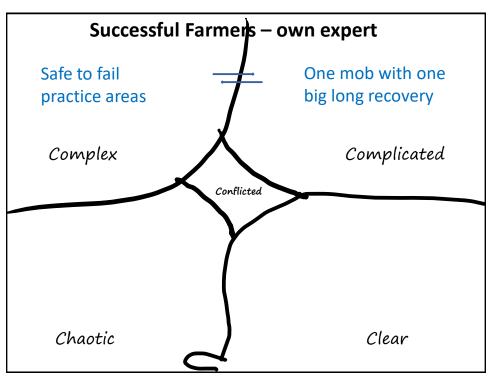
© Graeme Hand May not be copied or distributed without prior permission E: graemehand9@gmail.com

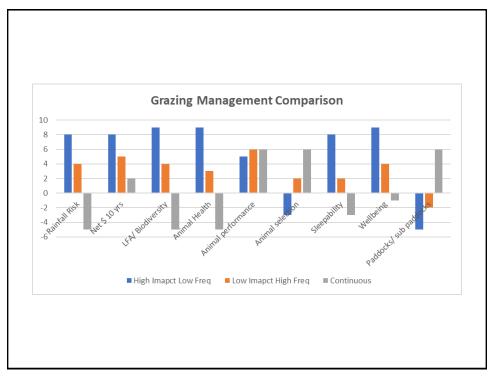
Successful Design to reduce risk

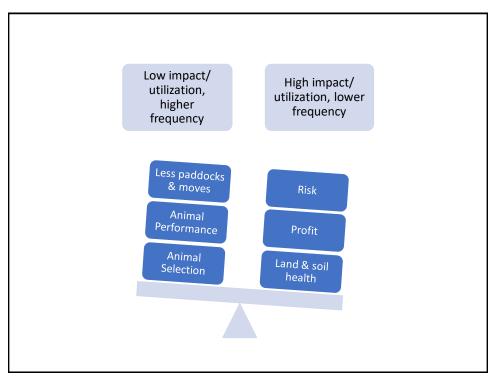
1. Debt

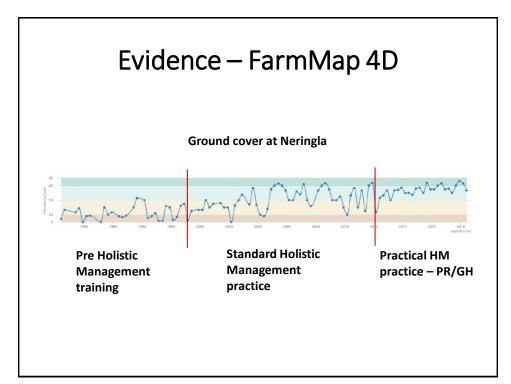
• 20% debt on the land & no debt on cows

2. Seasonal


• 6-12 month recoveries – one mob


3. Market Price


• Expenses < 10% of selling price


42

42

Agenda

- Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- Q&A

Weekly Planned Grazing Corrective Action Form (COW MOB) Date 27th March 2020

ltem	Variation to Plan (increasing/ okay/ decreasing)	Cause of Variation	Action to return to plan	Who
Recovery time	Ok	conservative estimates + plenty of summer rain and mild conditions + understocked	Recovery estimates have exceeded 365 days - focussing on building herd numbers internally	Alex

48

Perennial grass recovery	Ok	recovery times have increased leading to better recovery for grass species	Focus on slowing cow moves and trampling litter, clearing growth points and high utilisation	Alex
Litter decomposition	Ok	Milder weather, good rain, increased fungal activity	Aim to increase trampling, maintain ground cover by shifting on gut fill	Alex
Gut fill Scores	Decreasing	Higher energy inputs needed during calving?	Observe and move when 20-40% are at gut fill 4	Alex
Dung Scores	Ok	N/A	No Action	Alex
Contentment Scores	Ok	N/A	No Action	Alex
Drinking Scores	Ok	N/A	No Action	Alex

Adapted from Holistic Management® by Graeme Hand

Coaching programme

Main benefits of the coaching programme

- ➤ Dramatically improve your plant, soil & animal health
- ➤ Significantly increase your bank balance
- ➤ Reduce stress and unintended consequences
- ➤ Money back guarantee

50

50

Coaching programme

Main features of the coaching programme

- ➤ Includes small group and one on one webinars, email and phone calls to address your individual barriers to success
- Simple "safe to fail" plans, based on proven principles, that address your barriers.

Coaching programme

Main features of the coaching programme

Weaver's, Balmoral, Victoria.

"Without Graeme Hand, we couldn't have done it".

Lyn Heenan, Stoneleigh, Victoria

"I was rolling drunk with happiness at how this paddock has shifted into productivity. Here are before and after photos".

52

52

Coaching programme

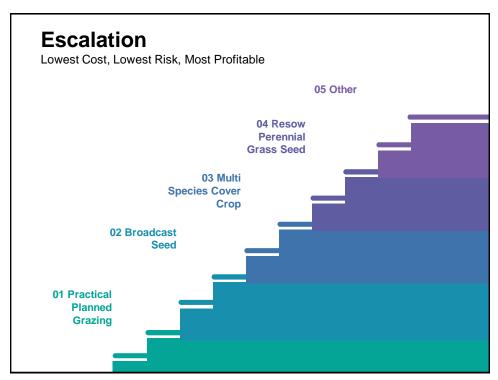
Main features of the coaching programme

Read's, Perry Bridge, Victoria.

"We commenced with Cell Grazing with RCS/Principle Focus in 2002 and Holistic Management in 2009 with Graeme Hand. It wasn't till we practiced HM with Graeme that we realized we were not allowing Sufficient Recovery Time for the perennial grasses for our pastures to be Regenerative. Sustainable is not good enough"!

Coaching programme

Free one on one consult


- If you would like to find out if a coaching programme can work for you we offer a free one on one consult
- ≥30 minutes.
- Lots of questions and ideas on how to improve your business
- There is no charge or expectation that you will buy anything.

54

54

Agenda

- Our story
- 2. Level of change and risk
- 3. Complexity
- 4. Landscape Function
- 5. Description of planned grazing extremes forced variation, recovery, stock density and plant utilization
- 6. What works in practice
- 7. Coaching programme
- 8. Q&A

